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INTRODUCTION
This report describes a solution formulation for and its spplications to

initial boundary value problems of structural dynsmics and stress waves.

Excellent 't.lnnrical results are stated in conjunction with finite element

discre.tintion. The basic concept of this approach is to establish a varia-

tional problem equivalent to a given initial boundary value problem, which is
. in general, non-self-adjoint, through the use of an adjoint field variable and
the use of some large "spring” constants so that all the end cond{t{ons can be
transformed into ‘nat.utal “"boundary” conditions. Therefore, the 'llupe func—~
tions used need not satisfy any end conditions a priori in solving the varia-
tional problem in-the same manner as applying the Rayleigh-Ritz method for
self-adjoint problems. This ssme concept was demonstrated in solving initial
value problemes in a paper delivered at the Internationsl Symposium on
Numerical Methods in Engineering Science series in 1978 and later published in
the Jourui of Sound and Vibration.! 1In this present report, the formulation
is e!tqndod to initial boundary value problems and the numerical results
obtained are also encouragirg.

In the uction. vhich foilows immediately, two initial boundary value
problems are stated. One is a Jlongitudinal stress wave problem in a rod.
There is a discontinuity in the initial data given. We wish to trace this
discontinuity in the numericsl solution using the present apprcach. The

second problem is a beam vibration problem under a moving concentrated load.

) 13, J. Wu, “Solutions to Initial Value .Problm by Use of Finite Elements -
H Unconstrained Variational Formulstions,” 1977 Journal of Sound and Vibration,
* 2. PP 3‘1‘3”0 .
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This is a much more difficult problem since the partial differential equation
is of fourth order and the force is singular in nature. In the next section,
variationsl problems equivalent to the given initial boundary problems are
utablrioh&i. The finite element discretization procedures are then briefly

recaptured. Lastly, mmerical results are presented with some comments.

INITIAL BOUNDARY VALUE PROBLEMS

Two initial boundary problems of structural dynamics will be stated in
this Section. The first one is of longitudinal elastic stress wave in a rod
with a sudden change in initial conditions. The second one is concerned with
lateral vibrations of a Euler-Bernoulli beam subjected to a moving
concentrated load.

Longitudinal Stress Wave in a Rod

The rod 1is fixed at one end and free at the other end. The discontinuity
dar;a arises from the initial linear displacement, corresponding to a constant
stress, due to' a force applied at the "free” end. This force suddenly
disappears at time sero causing a stress discontinuity at the free end. The

differential equation can be written as:

2y 1 % 0<x <t
oSy Swy S (1)
] at 0<t<T
with
a? = B/ 2)

where u = u(x,t) is the axial 4isplacement; x,t are the coordinates in axial
direction and in time, respectively; p,E are density and Young's modulus,
respectively, of the rod material; £ denotes length of the rod; and T denotes

some finite time of interest.

j




R L |

TSP PAP I e s < o - =

For the boundary conditions, wa have

u(0,t) = O
and
' u (3)

2 (1 0
ax t)

The dyn.a-:lcl of the problem are due to the initial conditions. It is assumed
that the rod is stretched to a linear displacement by a force P which vanishes
at time t > 0 (see Figure 1). The initial velocity of the rod is assumed to
be sero. Thus

P

u(x,0) = = x ; and
AR
(4)

du 0 0
at (x,0)

‘P B, I, A

Figure 1. A Rod PFixed st One End and Subjected to a Load P, which is
Suddenly Released at Time Zsro.

It is convenient to use dimensionless parsmeters. Let
Wweuy/t , xt=x/t , tt=t/T 6]
Then, Bq. (1) in dimensionless form is
240 2 2y O <xr <]

el w2 " gcemct ®

Rt T




L

e m—— e

where
b2 : (z) ¢))
al 1T
The boundary conditions become
: ur
u*(0,t*) = 0 , Py (1,t%) = 0 (8)
and
duk
u*(x,0) = PAxk ; === (x*,0) » 0 9
aLh
where
P
PR 8 == (10)
AR

is the force in dimensionless form.

The stated pfoblu in dimensionless form combines Eqs. (6), (8), and (9)

with the new dimensionless parmmeters related to physical counterparts by Eqs.

(5), (6), and (10). To simplify writing, we shall drop the asterisks (*) in

Rqs. (6), (8), and (9), and rewrite them as

- 0<x«<1
uw -b2u=0 ; (6')
0<t<1l
u(0,e) =0 ; u'(l,t) =0 (8')
uw(x,t) «Px ; w(x,0) =0 9")

where & prime (') indicates differentiation with respect to x and a dot (°),
with respect to t.

Bess Vibrations Under Moving Loads

Let us consider the differential equation of a uniform Euler-Bsrnoulli
beam subjected to a moving, concentrated force.
0<x< ¢t

Ely"" + oAy = p&,,-x) (11)
0<t<T




B i Y

where
E,p = Young's modulus, density of the beam material
I,A . = gecond moment, area of the beam's cross-~section
L = length of the beam
y=y(x,t) = beam deflection
x,t = coordinates in beam's axial direction and in time
P = “magnitude of the concentrated force
§(x) = Dirac delta function

xXp=xp(t) = location of P
T = gome finite time of interest
Again it will be convenient to eamploy nondimensional parsmeters and

equations. These will be introduced by way of Eq. (11). Thus, let

yrmy/t , xt=x/t , th=s¢/T (12)
Using Bq. (12) in Eq. (11), one has
- 0<xr <1
y*"" + yiyk = QS(xph-x*) (13)
0<xt <1
where )
c &2 pALY or pa2 1)
vTe: ar * © I

Also note in Eq. (13) that the differentiations are now with respect to the
nondimensionalised variables x* ant t*. From now on, we shall use Eq. (13)
with the asterisks dropped altogether.

- - 0<x¢<1
Y™ +ky + v2y = Q8(xp=x) (15)
o<1




VARIATIONAL PROBLEMS - A GENERALIZED RAYLEIGH-RITZ METHOD

For the stress wave problem in the previous section, consider a
variational problem.
' 81, = 0 (16a)
with |

l l L X
Io = Ig(u,v) = Io fo (~u'v'+b2uv)dxdt (16b)

where u(x,t) and v(x,t) are said to be adjoint to each other, It is a simple
matter to see that this problem is an indeterminate one. However, the
functional of Bq. (16b) can be modified to a varistional problem which is
equivalent to the boundary/initial problem of Eqs. (6'), (8'), and (9'). Thus
consider ‘

I =0 (17a)
with 1 1 .o
I=I(uv) = IO fo (~u'v'+b2uv)dxdt

+ qu; u(0,t)v(0,t)dt

1 1
+ kzbzfo [u(x,0) - uo(x))v(x,1)dx + b2 IO u(x)v(x,0)dx (17b)

We shall teke the first variation of the function I(u,v) of Eq. (17b) in
such a manner that Sv is completely arbitrary while Su is set to zero

identically. Hence, by msans of integration-by-parts, one has




(ST)gywo = f; f; (u"=b2u) Svdxde
l -
- !o u'(1,t)év(1,t)dt
1
+ Io (u(0,t) + kju(0,t)]év(0,t)dt
1 .
+ b’!o {u(x,1) + kz[u(x,0) - ug(x)]}év(x,1)dx
1 .
- v Jo {u(x,0) = uj(x)]év(x,0)dx = 0 (18)

The fact that Sv(x,t) is complately arbitrary enables us to conclude from Eq.

(18) that
0<x<1] .
u ~blu=0 ; (19a)
0<tc<1
] w(l,e) =0
u'(0,t) + kju(0,t) = 0
u(x,1) + kalu(x,0) = ug(x)] = 0 (19b)
and

' u(x,0) - up(x) = 0
It is them observed that the initigl boundary value problem defined by Eqs.
(19a) and (19b) reduces to thst of Eqs. (6'), (8'), and (9') if one lets k)
and k3 go to infinity* (and with Ug(x) = Px snd uj(x) = 0). This fact
suggests that the variational problem of Eqs. (17a) and (17b) can be used as a
basis of a !uin element discretization for the approximate solutions to the
original initial boundary problem. It should be moted that all the suxiliary

I ' *This process 1s sometines referred to as the penalty function method. See,
for exmaple, Meference 2.

ln c. mr. g.uuuuon by Vector Space Msthod, John Wiley, 1969, p.
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conditions in Eqs. (19a) and (19b) are the so-called natural boundary
conditions. They are the consequence of the variational problem - just like
the differential equation itself. For this reason, the above solution is
referred to as a Generaligzed Rayleigh-Ritz Msthod.

By a similar process, one can htnblhh a variational problem for the

vibration problem of a beam under a moving load. In this case, one has
1 1 ) - -
61 = Io Io [u"8v™ - udv - 8(x—x)év]dxdt
1
+ jo [kju(0,t)8v(0,t) + kau'(0,t)év'(0,t)
.+ kau(l,t)év(l,t) + ksu'(1,t)év'(1,t)]dt
1 .
+ Io {ksu(x,0)6véx,1) + kgu(x,0)év(x,0)]dx = 0 (20)
Through integrations—by-parts,
1 1 T . -
81 = Io Io [u"" + u - §(x=x)]év(x,t)dxdt
1
+ fo {[xju(0,t) + u"'(0,t)])év(0,t) + [k2u'(0,t) =~ u"(0,t)])sv'(0,t)
+ [k3u(l,t) = u""(1,t)]18v(1,t) + [k4u'(l,t) + u"(1,c)]6v'(1,t)]}dt
l L ] -
+ IO {{ks(u(x,0)=0) = u(x,t)]sv(x,1) + (kg+l)[u(x,0)-0)év(x,0)}dx = 0 (21)

The original differential equation and the boundary and initial conditions are
recovered from the equation above due to the arbitrariness of the variations

$(x,t) and by properly selecting the values of k¢,s, 1 ~ 1,2,..,,6.

-
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FINITE ELEMENT DISCRETIZATION

Only essential features will be stated in the finite element discretiza-
tiou hou_._ The region of a unit square (0 < x € 1; 0 < t < 1) 1s further
divided into KxL rectangles by taking K divieions in x direction and L
divisions in t direction. Local coordinates (E.ﬁ) in each (1,§)th element are
related to (x,t) by these equations:

E=tl) axx-1+1

(22)
nend) et -3 +1
Within each rcluo-nt, the unknown function u(x,t) is replaced by the
approximation: -
u(g,4)(E,n) = gr(ﬁ.n) Uy,
(1,]) (1,3) (23)

Sv(q,1)(E,n) = aT(&,n) 8V(q,y)
~where a({,n) 1is the shape function vector amd U(g 4), GV(i.j)‘ are the
generalized coordinates. The specific form of a(f{,n) employed here is such
that each one of the sixtesn components is:
ke 1'2.00000.16
ax(&,n) = bg(E)by(n) , (24)
1, = 1,2,3,4

with
bi(e) = 1 - 3k2 + 2¢3

b2(E) = € - 262 + §3
b3(E) = 362 - 2¢3
b4(E) = -£2 + €3
and the relations between index k and the pair (1,j) are given in Tsble I,

(25)




TABLE I, RELATIONSHIP BETWEEN (i,§) AND k IN EQUATION (24)

k (1,1) k (11>
1 (1,1) 9 (1,3

2 (2,1) 10 (2,3)
3 (1,2) 11 (1,4)
4 (2,2) 12 (2,4)
S 3,1) 13 (3,3)

6 (4,1) 14 (4,3)
7 3,2) 15 (3,4)

18 ] w2 | 16 ] 4.8
Using Eqs. (22) through (25) in BEq. (17) end the fact that V“'j) is

completely arbitrary, the matrix equations for the unknowns U(1,) can be
routinely assembled and solved. Further detsils will be omitted here.

NUMERICAL RESULTS AND DISCUSSION

Some of the numerical results are presented in this section. For the
stress wave problem*®, Table II provides solutions of v(x,t), du/ox(x,t) and
du/at(x,t) for x = 6. 0.1, 0.2, +4¢1:0 and for t = 0, 0.5, 1,0, 1.5, and 2.0.
During this time interval, the original displacement has gone through a
complete sign ;tvcr-ul as shown in Figure 2. This particular set of data was
obtained by taking K= 10 and L = 1 with restart procedures, i.e¢., the final

*for exact solution to this problem, see for example, Raference 3.

3. 8. Jacobeon and R. S: Ayre, Engineering Vibrations, McGrew-Hill, 1965, pp.
472-474. .
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(PART 2)

TARLE II. SOLUTIONS TO THE STRESS WAVE PROBLEM OF EQ8. (6'), (8'), and (9') with b = 1.0, P = 1,0,

at Time t = 2,00

Data

u(x nfy

aufat. ,

-0.00000
(0.00000)

{0.00000)

0.00165

(0.00000)

-0.00119

0.00610
(0.00000)
(0.00000)

-0.00308

| -0.02259

(0.00000)

0.02001

(0.00000)

(0.00000)

-0.05514

0.07546

(0.00000)

(0.00000)

=0.23643

0.31500
(0.00000)

du/ox

-0.02019

-0.98040

-0.01911

-0.97758

-0.00984

-0.98060

-1.01522

0.84502

-0.84502

-1.19080

-0.00000
("'l oom)

0.00000

(0.00000)  |(~1.00000)

=0.10003

(-0.10000) (-1.00000)

-0.19992

(=0.20000) }(-1.00000)

-0.,30008

=0.39981

(-0.30000) ](-1.00000)
(-0.40000) |(-1.00000)

-0.50035

(-0. 5m) (-l om)

=0.59945

(-0. m) (-l om)

-0.69929

(=0.70000) }{(-1.00000)

-0.80180

(-0.8@00) (-1 -00000)

~0.90529

(-0.50000) |(~1.00000)

-0.98802
(-1.0000)

Data at Time t = 1,50

VLT

0.00000
(0.00000)

0.00235

(0.00000)

(0.00000)

=0.04972

0.09812

(0.00000)
(0.00000)

~0.02522

(0.00000)

=-0,.40290

-1.14247

(-1.00000)

(~1.00000)

~0.92639

(~1.00000)

-loom
(-‘.m)
-0.93441

(-1.00000)

h"ﬁiuru in parentheses indicate exact solutions.

% | 88 28 28 28 38 28 28 28 38 58 s8

AL EE E R EERE R R R
33 37 3 71 93 24 95 34 3¢ 25 9e

. | 88 .8 8% 38 38 38 28 3§ 38 28 =8

3|88 5% 82 58 &6 82 20 38 &% 88 8¢

¥ | 92 ¥ §F §¢ ¥F §¢ ¥% T% T5 ¥% ¥%

e =28 8 3 8 3 2 3 3 s
o o [-3 [~ (- [~] [ -] o (-] o o=t
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u(l,4)=1.0

1.4)

Yigure 2. Exset Solution Surface uwsu(x,t) for the Strese Nave Prodlem
of Bqs, (6°), (8'), and (9') in the Negion: 0 < x < 1 and
0<t<d (withP=1.0and b= 1,0).

13




solution in the first time step was taken as the initial condition of the next
step in time, and so on. Values of the exact solutions are given in
parentheses. Excellent agreement is observed. The fact that the
discontinuity of the solution follows along without much oscillation is worth
mentioning.

For the beam vibration problem with a moving force, some typical
numerical solutions are given in Tables III and IV. The moving concentrated
force is assumed to travel at a constant velocity ¢ (although this 1is not at
all a restriction for the present method) such that

x(t) = ct
where ¢ is dimensionless velocity. For small ¢, ¢ = 0.0001, and the
displacement solutions become those of static deflections as shown in Table
I1I. For a large c (compared with unity), c = 10, and solutions show dynamic
effects as indicated in Table IV. As a comparison, solutions obtained by the
Fourier series and Laplace transform method? are given 1in parentheses. Good
agreement exists even in cases with considerable dynamic effect.

In conclusion, this report has demonstrated through examples of
structural dynamics an approximate gsolutfon formulation (which is hoth a
weighted method and a variational problem), the ' finite element implementation,
and some favorable numerical results. Although only linear problems have been
mentioned, an application to solutions of non-linear problems is now being

investigated.

4y, Fryba, Vibrations of Solids and Structures Under Moving Load, Noordhoff,
1971. )
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